Exercise 7.2.8

The differential equation

$$
P(x, y) d x+Q(x, y) d y=0
$$

is exact. If

$$
\varphi(x, y)=\int_{x_{0}}^{x} P(x, y) d x+\int_{y_{0}}^{y} Q\left(x_{0}, y\right) d y
$$

show that

$$
\frac{\partial \varphi}{\partial x}=P(x, y), \quad \frac{\partial \varphi}{\partial y}=Q(x, y)
$$

Hence, $\varphi(x, y)=$ constant is a solution of the original differential equation.

Solution

Use different dummy variables of integration.

$$
\varphi(x, y)=\int_{x_{0}}^{x} P(r, y) d r+\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s
$$

Take the derivative of both sides with respect to x.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial x} & =\frac{\partial}{\partial x}\left[\int_{x_{0}}^{x} P(r, y) d r+\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s\right] \\
& =\frac{\partial}{\partial x} \int_{x_{0}}^{x} P(r, y) d r+\frac{\partial}{\partial x} \int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s
\end{aligned}
$$

The second integral is independent of x, so its derivative is zero. (x_{0} is just a constant.)

$$
\frac{\partial \varphi}{\partial x}=\frac{\partial}{\partial x} \int_{x_{0}}^{x} P(r, y) d r
$$

Apply the fundamental theorem of calculus to differentiate the integral.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial x} & =\left.P(r, y)\right|_{r=x} \\
& =P(x, y)
\end{aligned}
$$

Now take the derivative of φ with respect to y.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial y} & =\frac{\partial}{\partial y}\left[\int_{x_{0}}^{x} P(r, y) d r+\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s\right] \\
& =\frac{\partial}{\partial y} \int_{x_{0}}^{x} P(r, y) d r+\frac{\partial}{\partial y} \int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s
\end{aligned}
$$

Apply the fundamental theorem of calculus to differentiate the second integral.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial y} & =\frac{\partial}{\partial y} \int_{x_{0}}^{x} P(r, y) d r+\left.Q\left(x_{0}, s\right)\right|_{s=y} \\
& =\frac{\partial}{\partial y} \int_{x_{0}}^{x} P(r, y) d r+Q\left(x_{0}, y\right)
\end{aligned}
$$

Because the limits of integration are independent of y, the derivative can be brought inside the integrand by the Leibnitz rule.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial y} & =\left.\int_{x_{0}}^{x} \frac{\partial P}{\partial y}\right|_{x=r} d r+Q\left(x_{0}, y\right) \\
& =\left.\int_{x_{0}}^{x}\left[\frac{\partial}{\partial y}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{x=r} d r+Q\left(x_{0}, y\right) \\
& =\left.\int_{x_{0}}^{x}\left[\frac{\partial}{\partial x}\left(\frac{\partial \varphi}{\partial y}\right)\right]\right|_{x=r} d r+Q\left(x_{0}, y\right) \\
& =\left.\frac{\partial \varphi}{\partial y}\right|_{x_{0}} ^{x}+Q\left(x_{0}, y\right) \\
& =\frac{\partial \varphi}{\partial y}(x, y)-\frac{\partial \varphi}{\partial y}\left(x_{0}, y\right)+Q\left(x_{0}, y\right)
\end{aligned}
$$

This first term on the right cancels the one on the left.

$$
0=-\frac{\partial \varphi}{\partial y}\left(x_{0}, y\right)+Q\left(x_{0}, y\right)
$$

Solve for the derivative.

$$
\frac{\partial \varphi}{\partial y}\left(x_{0}, y\right)=Q\left(x_{0}, y\right)
$$

Therefore,

$$
\frac{\partial \varphi}{\partial y}=Q(x, y)
$$

The ODE then becomes

$$
\begin{gathered}
P(x, y) d x+Q(x, y) d y=0 \\
\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y=0 .
\end{gathered}
$$

On the left is how the differential of a two-dimensional function $\varphi=\varphi(x, y)$ is defined.

$$
d \varphi=0
$$

Integrate both sides to obtain the ODE's solution.

$$
\varphi(x, y)=\text { constant }
$$

