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Exercise 7.2.8
The differential equation

P(x,y)dx + Q(z,y)dy = 0
is exact. If
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show that

ox

Hence, ¢(x,y) = constant is a solution of the original differential equation.
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= = P,y), a;yp = Q(z,y).

Solution

Use different dummy variables of integration.
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Take the derivative of both sides with respect to x.
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The second integral is independent of x, so its derivative is zero. (z is just a constant.)
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Apply the fundamental theorem of calculus to differentiate the integral.
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Now take the derivative of ¢ with respect to y.
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Apply the fundamental theorem of calculus to differentiate the second integral.
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Because the limits of integration are independent of ¥, the derivative can be brought inside the
integrand by the Leibnitz rule.
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This first term on the right cancels the one on the left.

0
0= _£(x07 y) + Q(w07y)

Solve for the derivative. 5
%(IOa y) = Q(SUQ, y)

Therefore,
Iy
The ODE then becomes
P(z,y)dz + Q(x,y)dy =0
Jyp Dy
“d “r
ox T oy

On the left is how the differential of a two-dimensional function ¢ = ¢(z,y) is defined.

dy = 0.

dp =0
Integrate both sides to obtain the ODE’s solution.

o(z,y) = constant
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